Calculate the determinant of the matrix.
Computes the determinant using the Laplace expansion along the first row. The determinant is a scalar value that represents the scaling factor of the transformation represented by this matrix.
For a 3x3 matrix: | a b c | | d e f | | g h i |
det = a(ei-fh) - b(di-fg) + c(dh-eg)
- Returns
- The determinant value.
- Note
- Properties of the determinant:
- det = 0 indicates a singular (non-invertible) matrix
- det = 1 for pure rotation matrices
- |det| represents the scale factor of the transformation
static consteval Angle FromDegrees(double degrees)
Creates angle from degrees at compile time.
Definition angle.hpp:204
Fixed-point arithmetic optimized for Saturn hardware.
Definition fxp.hpp:57
constexpr Fxp Determinant() const
Calculate the determinant of the matrix.
Definition mat33.hpp:606
static constexpr Matrix33 CreateRotationX(const Angle &angle)
Create a new X-axis rotation matrix.
Definition mat33.hpp:321
constexpr Matrix33()
Default constructor initializing to a zero matrix.
Definition mat33.hpp:76